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This study deals with detailed descriptions proposed to analyse slow chain diffusional process effects on 
n.m.r, properties of nuclei linked to long linear polymer molecules in melts or in concentrated solutions. It 
aims to predict relationships among macroscopic viscoelastic properties and semi-local dynamical 
properties observed from n.m.r. These relationships are discussed considering two main models of low- 
frequency chain fluctuations in melts: a multiple relaxation-mode spectrum analogous to a Rouse model 
or a single relaxation-mode spectrum analogous to a reptation model. The two descriptions are 
compared with each other. The Rouse model was chosen because n.m.r, properties might be sensitive to 
the equilibration process of conformational fluctuations within a so-called 'tube" as well as to the 
reptation in a 'tube'. Also, the Rouse model is more easily handled than the reptation one. Local 
molecular properties are transferred to the unusual n.m.r, semi-local space scale (<30  A) through the 
submolecule concept: every monomeric unit is supposed to have a uniform average orientational order 
within a given submolecule. Semi-local dynamical properties are analysed from the transition of the 
spin-system response from a pseudo-solid behaviour to a liquid-like one, induced by shortening 
polymer molecules or by slightly diluting them. This transition is currently observed from the transverse 
magnetic relaxation function of nuclei linked to entangled polymer chains. This spin-system response is 
contrasted to the longitudinal response only sensitive to local high relaxation frequency motions. Also, it 
is shown how stress-relaxation processes induced on a macroscopic scale can be monitored on a semi- 
local space scale from n.m.r. Relaxation rates of the transverse magnetization are shown to depend 
strongly upon both the initial stretching ratio 2 of the polymer sample and the structure of its chain 
relaxation spectrum. 

Keywords Polymer; nuclear magnetic resonance; entanglements; dynamics; stress relaxation 

INTRODUCTION 

It is now well established that the spin-system response of 
nuclei linked to entangled chains in a melt exhibits a 
transition from pseudo-solid-like properties to liquid-like 
ones, by shortening polymer chains or by slightly diluting 
them 1-3. Pseudo-solid properties of the relaxation fun- 
ction of the transverse magnetic component reflect the 
residual energy of interactions of nuclear spins. This non- 
zero average is observed whenever chain entanglements 
dissociate in a time interval too long compared with the 
characteristic time of n.m.r, measurements. In this case 
low-frequency fluctuations are perceived from n.m.r, as 
frozen; it is like observing the random rotation of a small 
molecule,in a time scale considerably shorter than its own 
correlation time. Liquid-like properties of the spin-system 
response are observed on nuclei linked to short polymer 
chains which are still entangled but which undergo a 
random diffusion process fast enough to be perceived as 
isotropic from n.m.r. The situation is depicted in Figure 1. 
When the temperature of any glassy polymer sample is 
raised, the transverse magnetic relaxation rate A is usually 
observed to decrease strongly, right above the glass 
transition temperature T~. Then, either of two cases must 
be considered: On the one hand, the relaxation rate A 
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measured on long linear chains slowly decreases around a 
value 6h corresponding to a residual spin-interaction 
strength equal to ,-~ 102 Hz (Figure la); the solid-like spin- 
system response is easily controlled, without any am- 
biguity from a shortening of 6h induced by sample 
rotation 4'5. On the other hand, for short chains, the 
relaxation rate is found to decrease slowly around a value 
6~ equal to ,,~l. Hz, as is usually observed on any 
conventional liquids (Figure la). Accordingly, at a given 
temperature T~> T~, a transition from 6 ~  102 Hz to fi~ 
~ 1 Hz is induced by shortening polymer chains (Figure 
lb). 

It is worth emphasizing that the motional averaging 
observed from 6~ to 6~ is necessarily induced by slow 
molecular random processes associated with the dif- 
fusional motion of polymer chains. Such a transition of 
n.m.r, properties would also be observed by diluting 
polymer chains or by raising their temperature. 

Most recent studies of relaxation properties of the 
transverse nuclear magnetization attempted to identify 
these slow molecular processes with characteristic me- 
chanisms of chain diffusion .in melts or in concentrated 
solutions 1-3.6-s. N.m.r. is until now, to our knowledge, 
the only measuring technique which can be used to 
investigate slow chain diffusion processes (D > 10-12 s - 1) 
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Figure I Schematic representation of the transition of n.m.r. 
properties from a solid-l ike spin-system response to a liquid-like 
one. (a) The relaxation rate A of the transverse magnetization is 
plotted as a function of temperature Tg is the glass transition 
temperature. (b) The relaxation rate A is plotted at a given 
arbitrary temperature T i > Tg as a function of chain molecular 
weight or polymer concentration 

in melts both on a semi-local space scale and on a time 
scale of about 0.1 s. Macroscopic dynamical properties are 
usually obtained either from viscoelastic measurements 9 
or from observations of chains labelled with radio- 
tracers 1° or deuterium 1~ and diffusing through a whole 
sample from one end to the other. Neutron scattering ~2, 
forced Rayleigh light scattering ~3 or n.m.r, pulsed field 
gradient s techniques are applicable to the observation of 
diffusion processes of short chains in melts or longer 
chains in semi-dilute solutions. For  example, the self- 
diffusion coefficient of polystyrene chains in benzene was 
found to vary in accordance with the predicted chain 
molecular weight and concentration dependences 14, 

D~tfocM 2+0. i  C-1.7  +0.1 

using forced Rayleigh light scattering measurements 
performed on chains labelled with a photochromic 
probe ~ 5. Chain molecular weights were lower than 8 × 105 
while polymer concentrations were smaller than 0.2 g/g. 
Also, the self-diffusion coefficient of deuterated po- 
lyethylene chains was found to be in agreement with the 
predicted M -2 dependence (DselfOCM -2-+°'1) in melts11; 
chain molecular weights were lower than 3 x 10 4. 

Besides viscoelastic properties or local dynamical pro- 
perties easily characterized from relaxation processes of 
the longitudinal nuclear magnetization, there is a lack of 
information about detailed mechanisms associated with 
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slow chain diffusion processes observed on a semi-local 
a space scale. 

The present paper aims to describe relaxation proper- 
ties of the transverse nuclear magnetization specifically 
induced by any chain diffusion process in a melt or in 
concentrated solutions. More precisely, the purpose of 
this paper is to provide detailed characteristic n.m.r. 
properties which should help in identifying chain re- 
laxation spectra observed on a semi-local space scale. 
Two main models will be discussed: the Rouse model 16 
and the reptation model 17. According to the Rouse model 
the spatial memory of a chain is lost at any time at any 
point of the chain, whereas according to the reptation 
model the spatial memory is lost at chain ends only. This 
latter model implicitly describes strong topological con- 
straints which prevent sustained lateral chain motions. 
The Rouse model will be considered in either of the 
following two ways: First it will be used to describe the 
chain diffusion process as a whole although some viscoe- 
lastic properties are now known to be described in a more 
correct way by the reptation model; however, the Rouse 
model is appropriate to the illustration of general n.m.r. 
properties induced by a slow chain diffusion process. 
Alternately, this model will also be considered as possibly 
describing the equilibrium of conformational fluctuations 
within a 'tube' 18, its longest relaxation time being proper- 
tional to M 2. 

The basic assumptions underlying the n.m.r, approach 
to the observation of chain diffusion processes are as 
follows: 

(i) The broad chain relaxation spectrum consists of two 
well separated dispersions called f~l and Q2; f~l is the 
transition spectrum while f~2 is the terminal spectrum 
associated with the collective motion of all parts of a long 
linear polymer chain. 

(ii) A n.m.r, submolecule concept may be used, which 
results from the split of the chain relaxation spectrum into 
two parts. According to this submolecule concept a small 
space domain may be defined from its intrinsic physical 
quantities obtained from an average over all segment 
diffusional motions associated with the Q1 transition 
spectrum. The split of the relaxation spectrum into two 
parts is reflected by a cut of chain fluctuations in space: 
there is no stochastic dependence of segmental fluc- 
tuations between different submolecules. On the other 
hand, because of the f~2 spectrum, submolecules cannot 
be considered as being at full equilibrium. Physical 
quantities averaged over the ~ spectrum are still slowly 
varying time functions closely associated with the dif- 
fusion process of a whole chain: low-frequency fluc- 
tuations of submolecules are not stochastically inde- 
pendent of one another. 

It will be shown below that local molecular properties 
may be transferred to an unusual n.m.r, semi-local space 
scale (~<30 /10 through the submolecule concept. The 
magnetic relaxation rate 6~t is one of the physical quanti- 
ties resulting from an average calculated over any given 
submolecule, in a strongly entangled chain system. It is a 
residual energy of nuclear spin interactions, and 6~ will 
serve as an internal reference frequency to explore the 
chain diffusion spectrum modified by shortening polymer 
molecules or by diluting them. In the transition region of 
n.m.r, properties, the residual spin energy has a significant 
time variation and the effect of 6~ on magnetic relaxation 
is progressively blurred from a dynamical average in- 
duced by chain diffusion which leads to the relaxation rate 
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value 6~ (Figure 1). Therefore, the diffusion process of a 
whole chain is perceived from n.m.r, in a semi-local space 
scale defined over a submolecule; but this is, of course, 
associated with the whole relaxation spectrum describing 
collective motions of all submolecules. 

The main features to be discussed below are related to: 
(i) the structure of the spectrum actually perceived from 

n.m.r.; number of relaxation modes characterized by their 
corresponding weight factors; 

(ii) the chain molecular weight dependence of this 
spectrum; 

(iii) the observation of stress relaxation from n.m.r, 
The Rouse model and the reptation model will be used 

to predict characteristic n.m.r, properties which should 
permit one generally to distinguish a multiple relaxation- 
mode spectrum from a single-mode one, by analysing 
n.m.r, measurements. 

Recently, de Gennes analysed diffusion processes ob- 
served on a space scale r~ smaller than the coil size of a 
chain. He defined 19 a partial diffusion coefficient D~l~r3. 
It will be shown below that n.m.r, measurements are also 
associated with a partial rotational diffusion process of a 
chain. The transfer of local properties to a semi-local 
space scale through the submolecule concept will now be 
discussed; detailed relationships among dynamical semi- 
local properties and viscoelastic properties will be estab- 
lished in later sections; all results will finally be discussed. 
It is the first time, to our knowledge, that it is shown how 
stress-relaxation processes induced at a macroscopic scale 
can be monitored from n.m.r. 

the first one, low-frequency fluctuations (D 2 spectrum) are 
considered as frozen--it is like assuming that chains are 
embedded in a temporary network. The partial average of 
any nuclear magnetic quantity calculated over a given 
submolecule will be considered as a function of only the 
end-to-end vector r e of the submolecule; the fll spectrum 
will not be perceived through such an average whereas the 
symmetry of segment motions may play a crucial role on 
n.m.r, quantities. In the second step, low-frequency fluc- 
tuations are not assumed to be frozen anymore and 
partial averages are assumed to vary slowly with time 
according to the f12 spectrum; the end-to-end vector re 
participates in the collective motion occurring within a 
chain observed as a whole. 

N.m.r. model 
The n.m.r, model to be used in the present discussion 

has been extensively described in several references 2' 22. 
submolecules are pictured as freely jointed chain segments 
of step length a, the number of bonds in a submolecule is 
Ne and the number of submolecules in a given chain is Ns, 
and the chain contour length is L = NeNsa. Any bond a is 
supposed to carry a proton pair (Figure 2), dipolar 
interactions between different proton pairs are neglected, 
and n.m.r, properties are calculated from the dipolar 
interaction defined within each proton pair only. 

The typical quantity governing this dipolar interaction 
and to be averaged within a submolecule is: 

eo(a(t)) = 3~,Zh(3 cos20=- 1)/4b a (2) 

SUBMOLECULE CONCEPT 

Viscoelastic submolecules 
It is currently considered that the whole relaxation 

spectrum of long linear flexible entangled chains in melts 
or in concentrated solutions must consist of two well 
separated dispersions D t and f~2. The f~t transition 
spectrum is associated with high-frequency relaxation 
processes of short segments within a so-called sub- 
molecule. Any real chain is divided into submolecules of 
equal contour length Lo = Nea, where a is the mean length 
of a main chain bond. Le is given by the usual 
formula 9, 20.21 : 

N¢ =pRT/mo G° (1) 

with m0 the average molecular weight of a main chain 
bond and G ° the shear modulus in the viscoelastic plateau 
region; p is the polymer density. The mean size of any 
submolecule is assumed to be: 

o" = ( r ~ )  ' / :  =N~/2a 

There are no correlations between chain fluctuations 
occurring within different space domains defined from 
submolecules. The spatial cut in fluctuations is usually 
considered as defined by entanglement loci: submolecule 
properties are independent of chain molecular weight M. 
The f~2 terminal relaxation spectrum describes the low- 
frequency relaxation process of a whole chain resulting 
from collective dissipative motions of submolecules; D 2 
depends strongly upon chain molecular weight. 

In the present paper, the submolecule concept will be 
taken into consideration by considering that averages of 
most physical quantities can be calculated in two steps. In 

a(t) is the bond vector which carries the proton pair in 
which we are interested, b is the distance between the two 
nuclei, 7 is the gyromagnetic ratio, and 0° is the angle that 
a makes with the steady magnetic field B 0. 

Monomeric unit average orientationai order 
Any non-zero end-to-end vector ~ of the nth sub- 

molecule may be considered as describing a topological 
constraint exerted on this part of the chain. It has already 
been shown that such a constraint induces a non-isotropic 

Figure 2 The n.m.r, model of submolecule is a freely jointed 
segment; every bond a is assumed to carry a proton pair 
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rotation of bond segments a: these are not free to rotate in 
all directions of space 23. For a fixed end-to-end vector 4,  
the non-isotropic partial average of eo(a(t)), correspond- 
ing to the Q1 spectrum and resulting from such a 
constraint, is expressed as 22' 2a: 

gM(4) = ( %(a(t)) >4 
= (36M/2)(3 cos20,n - l )(r~")2/~ (3) 

e 

2 2 .  with 6M = x/b-~2 AGtro/L¢, A~ is the second moment of the 
resonance line which would be observed in the glassy 
state; 0~ is one of the angular coordinates of 4. Such a 
simple formula clearly shows how dynamical local pro- 
perties associated with a(t) are transferred to a semi-local 
n.m.r, space scale defined from the average size of a 
submolecule: a ~ ( 3 0  A) a. Collective motions of sub- 
molecules in a chain are involved in the transverse nuclear 
magnetic relaxation process through the slow time de- 
pendence of 4(t) end-to-end vectors (n = 1,2,...). 

It will be assumed throughout the present paper that 
the above formula (3) can be extended to real chains. More 
generally, any submolecule will be considered as a space 
domain roughly determined by entanglement loci. All 
magnetic interactions of nuclei linked to a chain will be 
assumed not to be averaged to zero within a submolecule, 
in a time interval smaller than all relaxation times of the 
Q2 spectrum. The corresponding residual spin energy will 
be considered as a single parameter function entirely 
determined by L¢. Nuclear spin interactions consist of two 
contributions: one comes from dipole-dipole interactions 
established between nuclei located on different chain 
segments, while the other comes from dipolar couplings 
existing within chemical species like methyl or methylene 
proton groups. However, the first contribution can be 
considered as negligible on average because of the strong 
internuclear distance dependence of dipolar interactions 
if-a). In the second contribution, distances between 
protons are fixed, and the residual spin energy results 
from an orientational average only. Such an analysis is 
easily satisfied by observinglaC nuclei in natural abun- 
dance, for example; but it also applies to protons on 
rotating methyl groups, or to methylene protons linked to 
highly flexible chains. Therefore, it can be considered that 
single chain magnetic properties are observed although 
all chains are in dynamical interactions with one another. 

applied in two ways to n.m.r, studies of two polymer 
systems. Considering long linear polyisobutylene chains 
in concentrated solutions the magnetic relaxation fun- 
ction of protons linked to these chains has been shown to 
obey a superposition property in the concentration range 
c =0.98 to 0.47 gcm-3; this was observed whatever the 
complex shape of the relaxation function a. In that case, 
the concentration acts as a simple parameter governing all 
magnetic properties within any submolecule, through the 
contour length Lo (formula (1)). Also, considering a pure 
cis-l,4-polybutadiene sample which is known to have a 
high density of entanglement loci, the resonance line 
spectrum calculated from formula (4) has been shown to 
be in reasonable agreement with experimental results 24. 

The magnetic relaxation function can also be written 
a s :  

! 

0 

for chain entanglements which dissociate quickly enough 
to be perceived from n.m.r. Characteristic properties 
resulting from formula (5) and relationships among 
viscoelastic properties and n.m.r, will be analysed in the 
next sections from two different models describing the 
collective motions of all submolecules: the Rouse and 
reptation models. Time-dependent probability distri- 
bution functions associated with the Rouse model are 
Gaussian functions while those characterizing the re- 
ptation model are not easily handled and all time averages 
are directly calculated instead of using distribution fun- 
ctions 25'26. Consequently, the spin-system response will 
be conveniently expressed within a second-order cu- 
mulant expansion27: 

with 

t 

0 

(g.(t) = eh(4(O))~h(4(t)) 

(6) 

(7) 

c~,(t) is the correlation function describing the loss of 
memory of 4(0; it will be calculated in the next two 
sections. 

Transverse magnetic relaxation function 
The transverse magnetic relaxation function associated 

with the residual energy eh of spin interactions can be 
expressed according to two main formulae. The first of 
these may be written as: 

~ . ( t )  = [cos(~h(q)t]o,~o°,. (4) 

for all proton pairs linked to strongly entangled chains 
when low-frequency fluctuations are supposed to be 
frozen; [ ].nc,t means an average calculated over end-to- 
end vectors of all submolecules. Note that the second 
moment of the resonance line determined from M~(t) is 
defined by 

[ ( -  dEMh/dt2)t= O]orient. , 2 = [(eM) ]one,t = 362 

M~(t) reflects characteristic properties of n.m.r, sub- 
molecules. The submolecule concept has already been 

N.M.R. AND THE REPTATION MODEL 

The tube concept was first introduced by Edwards to 
describe time-independent properties of chains at equilib- 
rium in melts 28. Then, de Gennes built the reptation 
model based on a two-step process 17' 29. The first step is 
an equilibration of conformational fluctuations within a 
tube; this was described as a migration of defects along the 
chain. An equilibrium is reached when the concentration 
of defects is uniform. Such a process has been shown to be 
characterized by a spectrum of relaxation times, the 
longest of which, TO, has a chain molecular weight 
dependence: To oc M 2. Possible effects of this equilibration 
process on n.m.r, properties will be analysed in the next 
section. Properties of the second step of the reptation 
mechanism have been extensively developed by Doi and 
Edwards and are in reasonable agreement with viscoelas- 
tic measurements 26. According to this model, any chain 
moves randomly forwards and backwards only, along 
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itself, or more precisely along the so-called primitive path 
of the chain (Figure 3). Any initial conformation of a 
portion of the primitive path is destroyed whenever either 
of the two chain ends diffuses through it. One of the main 
advantages of the tube model is to eliminate the many- 
chain problem; this is replaced with the study of a single- 
chain system, confined in the tube. The end-to-end vector 
of the nth submolecule is described by a vector R,+ ~ - R ,  
= d  of constant length d = N)/2a; therefore, according to 
formula (3): 

e~M(d) = (eo(a(t)))a = 1.2x/~ Ao/N ~ yO (aa) (8) 

The sperical harmonic Y°(~d) is a function of the 
angular coordinates f~a of d. Considering now that d can 
vary slowly with time, two cases will be analysed. 

For convenience, the subscript n is replaced by an arc 
length coordinate s, and Dev is the curvilinear diffusion 
coefficient of the chain along the tube. Also: 

k(f~ °, So; ~ ,  s) 
=(4~r) -~ ~ YT'*(t2°)YT'(f~a)exp(-Is-sol/fl) (11) 

l,m 
with 

1/fl = 1(1 + 1)Df/d z (12) 

The k(t)°,So;12d, s) function was assumed to obey a 
conventional rotational diffusion equation with an 
angular diffusion coefficient Df which reflects the static 
flexibility of the tube. The correlation function we are 
interested in is expressed as: 

~,(0, t )= 1.86~ exp(O~vt/f2)ll-O(Dcvt/f~)l/21 (13) 

Infinite tube 
Consider first the case that a polymer chain is trapped 

in an infinitely long tube of random conformation. The 
displacement of the nth vector R. +~ - R .  = d~ along the 
tube at rest induces an angular diffusion of this vector 
which depends upon the static stiffness of the tube. The 
probability distribution function of angular coordinates 
of any given vector d is written as: 

~(f~°,t;Qa,t)=k(D°,So;f~a,s ) H(so,t;s,t) (9) 

with 

H(s o, t o ; s, t) 
/ (s S0) 2 

\ 

= (4nDc~lt- to[)- 1/2 exp ( - 
k 4Dc~lt- tol] 

(10) 

/ 

/ 

/ 

7 

Figure 3 d vectors of submolecule are assumed to move 
backwards or forwards along the primitive path, in a tube which 
prevents sustained lateral motions 

where O(x) is the error function. 
When t is long enough (D¢J/f 2 > > 1): 

c¢~(0 ' t)r.oo ~_O.06aEA~/N2[D~nD~vt)~/2 ] - 1  (14) 

Also, at short times (D¢J/f 2 < 1): 

¢gs(O, t)t_. o ~- 1.862(1 - 12(Df[Dc:/rr] 1/2)/d2) (15) 

c4s(0, t) is of course very different from the usual exponen- 
tial time function observed on small molecules in ordinary 
liquids. Correspondingly, the mean square translational 
displacement of any point R, has been calculated by de 
Gennesl 7 : 

JR,(t) -R,(0)] 2 = 2d(DeJ/n) 1/2 (16) 

This result is also very different from a Fick law de- 
scription. The correlation function (15) reported in for- 
mula (6) would be observed at short times, when a real 
tube may be roughly considered as infinite. 

The magnetic relaxation function calculated for short 
times should be expressed for formulae (6) and (7) as: 

with O=nd4/(4OD~Dcv). A significant deviation from a 
Gaussian function may be observed if the time constant 
(0/62) 2/s has the same order of magnitude as ~ 1 i.e. if 0 
--~6M1/2; such a condition mainly depends upon the 
curvilinear diffusion constant Dcv. 

Tube of finite size 
We consider the case where chain ends can move 

randomly in all directions in space, at any time. It will be 
shown now that such a property leads to a correlation 
function very different from that expressed by formula 
(12). The quantity we are concerned with has already been 
calculated by Doi and Edwards 26 to analyse viscoelastic 
properties; this quantity was called: 

S~(s, t) = [d~(s, t)d~(s, t ) -  d26j3]/d 2 (18) 

and fl subscripts represent x, y and z components ofd(s). 
Once again an arc length coordinate s is used. Because of 
random properties of chain ends, the boundary condition 
for S~B(s,t ) is S~a(s,t)=O at s = 0  and s=L; therefore 
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S,,(s, t) is conveniently expressed as a series expansion of 
orthogonal functions sin(nps/L), p = 1,2 .... : 

with 

S~(s, t) = ~ hp(t) sin(nps/L) (19) 
p = l  

hp(t) = hp(0) exp[ - (n2p2DcJ/L 2)] (20) 

Note that the chain molecular weight dependence of the 
characteristic time TR=L2/n2D¢~ associated with this 
model is necessarily proportional to M 3, if the diffusion 
constant DCv is assumed to vary as M-1.  The initial 
condition of Szz(S, t) depends upon the experiment con- 
sidered on a given sample. 

Chain fluctuations at equilibrium. When chain fluc- 
tuations are observed at equilibrium, initial orientations 
of different d(s) vectors are uncorrelated; therefore, the 
function Sz~(s',O)S~(s,t) averaged over all initial 
orientations: 

r~(s,s';t)=[Szz(S',O)Szz(S,t)]o~..,. (21) 

must obey the initial condition: 

F~(s, s'; 0) = (4/45)6(s- s') 

(8d/45L) ~ sin(nps/L)sin(nps'/L) (22) 
p = l  

The average correlation of the submolecule s with all 
submolecules s' of a given chain is: 

Therefore: 

L 

d- 1 fr'o(s, s'; o) ds' = 4/45 

0 

(23) 

The relaxation function MR,(t ) behaves like a single 
relaxation-mode function because of the strong weight 
factor 8/Tz2p 2 (p = 1, 3,...). Also, it does not apply to very 
short times; more precisely, it applies at times longer than 
TO, where To characterizes the wriggling motion in a 'tube', 
Td being equal 17 to ~ N~TR. Limit expressions of formula 
(26) are analysed in the following way. When the terminal 
relaxation TR is much longer than 6~ 1, the kinetics of 
disentanglement are too slow to be perceived from n.m.r. 
Then the magnetic relaxation function M~, has a solid- 
like behaviour easily observed from a sample rotation 
effect; from formula (26), M~, is expressed as" 

M~R,,(t) "~ exp[ - (6~)2t z/2] (27) 

with 6~ = ~ . 8 6 , .  
When TR is much shorter than 6~ 1, then a motional 

averaging of the residual energy of spin interactions is 
expected to occur and the magnetic relaxation function is 
written as: 

with 
M1R.(t) "~ exp( - 6~t) (28) 

6~ = 1.862 ~. (TR/pz)(8/gZp 2) (29) 
p, odd 

The transition of n.m.r, properties (Figure 1) from a 
pseudo-solid response of the spin system (characterized 
by a relaxation rate 6~) to a liquid-like response (characte- 
rized by a relaxation rate 6M) is described by formula (26) 
at intermediate values of TR :TR "~ 6~ 1. Such a transition 
was calculated and reported on Figure 4. The order of 
magnitude of 6M is usually 102 Hz, and therefore TR should 
be equal to = 2 x 1 0 - 3 s  to be observed from n.m.r., 

Cg(s, t) = 1.862 ~ (4/rip) sin(rips/L) exp( - p2t/TR) (24) 
p, odd 

Two types of labelled chains may now be considered. 
(i) Fully labelled chains. When polymer chains observed 

from n.m.r, are fully labelled with protons or 13C nuclei, 
for example, the average of the above rg(s, t) function over 
all submolecules of a given chain is: 

L 

L -1 fog(s, t)ds = 1.862 ~ (8/~2p 2) exp(-p2t/TR) (25) 
p, odd 

0 

The above time function is analogous to the correlation 
function of the end-to-end vector of a chain, already 
calculated by de Gennes 17. It is also analogous to the 
shear relaxation modulus calculated in ref. 26: 

GR,(t) = G ° ~ (8/n2p2) exp(-- p2t/Tg) 
p, odd 

From formulae (25) and (6) the magnetic relaxation 
function is written as: 

MRs(t) = exp ( - -  1.862 ~ (TR/pZ)2(8/nZp 2) 
p, odd 

>< [ exp ( -  pZt/ra) + p2t/rR -- 1]) (26) 
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IOO 

q- 
<3 
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~ / / / I  
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Figure 4 Transition curve of n.m.r, properties described 
according to a reptation model from formula (26); with 1.86M = 
130 red s -1, and T R = 5 x 10 -3 S for M = 4.1 x I(P. The chain 
molecular weight dependence of T R is proportional to M 3. The 
broken line is a typical experimental transition curve 
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considering the reptation model. It will be shown below 
that a very different estimate of chain relaxation times will 
be obtained according to the Rouse model while the 
magnetic relaxation function will be shown to behave like 
a multiple relaxation-mode function. 

(ii) Partly labelled chains. Let us consider now proton 
chains labelled with deuterium nuclei on their middle part 
only; the length of the deuterated segment is supposed to 
be that of a submolecule. Then the relaxation function 
involved in n.m.r, is: 

Cg(L/2,t)= 1.862 ~ (4/np)exp(--p2t/TR) 
p, odd 

(30) 

the weight factor associated with the pth relaxation mode 
is now p-  1. The difference from p-  2 would be significant 
enough to consider that, according to formulae (30) and 
(5), a multiple relaxation-mode process governs the 
magnetic relaxation mechanism• 

Stress-relaxation process. The question that arises from 
the above description is to know whether or not the 
magnetic relaxation function could be sensitive to the so- 
called second relaxation process associated with the 
disengagement of a chain from a deformed 'tube' resulting 
from a sudden application of deformation 26. Then, for the 
sake of simplicity, the initial condition of Sz=(s, t) is 
supposed to be a constant number P0, independent of s 
(all submolecules have the same small orientational 
polarization at t =0). Therefore: 

and 

S~=(s, t) = Po ~ (4/rip) sin(rtps/L) exp(-  pZt/TR) (31) 
p, o d d  

the value of the chain relaxation time Ta compared with 
~M I. 

(i) Fast stress relaxation, TRrM < 1. Properties of the 
relaxation function MR,(t) (formula (26)) showed that the 
motional averaging process described by the correlation 
function ~S(s, t) is observed in the only case where the 
relaxation time TR is about equal to or shorter than 6fi 1. 
This general n.m.r, property also applies to the above 
~S(s, t) correlation function. Then, the decay of the MS,(t) 
function is expected to last over a time interval (6~TR)- 1 
>6r~1> TR. Therefore, during the time interval (~  10T0 
which would be necessary to measure a significant decay 
of MS(t), the stress-relaxation process is achieved (in a 
time interval >~ TR). In other words, the stress-relaxation 
phenomenon could only be perceived from the initial 
time-dependent behaviour of the MS(t) relaxation fun- 
ction. It is probably difficult to perform such a single-shot 
measurement• N.m.r. may be applied to monitor stress- 
relaxation processes in an easier way when the condition 
T R > 6M 1 is fulfilled• 

(ii) Slow stress relaxation, TR > 6~t 1. We now consider 
the case that the terminal relaxation time TR is much 
longer than 6~ 1 : 

TR > > ~M 1 (35) 

The time dependence of the correlation function ~S(s, t) is 
no longer expected to govern the magnetic relaxation 
process• The spin-system response has a pure solid-liquid 
behaviour. Right after a sudden deformation of the 
sample, the characteristic time T ° of the magnetic re- 
laxation process is determined by S~=(s,O) as it is defined 
by formula (31): 

O ~  2 2 - 1 / 2  Tm- (1.8~M[P0]oricat.) (36) 

S(s, t)=9lp2lo~iont6 2 /4 p~d (4fizp) 

X sin(nps/L) exp( -- p2t/TR) (32) 

To describe the stretching process of the sample we 
make the assumption of a finite deformation. Now 2 is the 
stretching ratio along the steady magnetic field direction, 
and the average of P02 over all orientations of sub- 
molecules is: 

[po2]o.¢nt. = (222 + 2-  1)2/5 + 2-  2 __ 2(222 + 2-  1)/32 (33) 

as it is calculated from: 

Po = [( 222 + 2-1) cos20d_ (1/2)]d 2 

Once again, the average over all submolecules leads to a 
relaxation spectrum with a weight factor per relaxation 
mode equal to 8/rc2p 2. 

The stress-relaxation process should be monitored 
from the magnetic relaxation function M s (t) obtained 

• P • S 
from formula (6) and from the correlation function ~ (s, t) 
describing chain dynamical properties: 

t 

0 

(34) 

However, two cases must be discussed depending upon 

The relaxation of Sz~ may be considered as frozen 
during the time interval T ° , because of the inequality (35)• 
To analyse the n.m.r, study of the slow stress-relaxation 
process which lasts over about 3TR, TR is divided into 
equal time intervals AT~ such that: 

T° <ATe< < TR 

The residual energy of spin interactions is expressed at 
any time tj =jAil (j = 1, 2, ...) after the sudden deformation, 
by S=z(tj) according to formula (27). The magnetic decay 
must then occur over a time interval roughly defined by 

T j  _ (1.862MIS==(t~)I)- X 

with T ° < T~ < < TR. The same reasoning may be applied 
at any time tj. Finally, when T i > 3TR, the stress-relaxation 
process is achieved and the magnetic relaxation function 
is governed by the time constant (rh)- 1, corresponding to 
an isotropic sample. Consequently, the stress-relaxation 
process should be observed from n.m.r, as a lengthening 
effect of the time constant of the transverse magnetic 
relaxation function. A more detailed description of such 
an effect will be given in the next section by considering a 
Rouse model to calculate exactly the spin-system re- 
sponse at any time T i. The stress-relaxation process can be 
monitored by investigating magnetization decay proper- 
ties at timesjA T~ (j = 0, 1, 2, .,.). The magnetic signal should 
be recorded as a whole over its decay time interval T~, 
using a so-called Carr-Purcell spin-echo procedure 15, to 

• avoid all effects of diamagnetic susceptibility inhomo- 
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geneities, necessarily induced by any sample deformation. 
It may be of interest to know how a stress-relaxation 
phenomenon induced at a macroscopic scale from a 
sudden sample deformation is perceived on a semi-local 
scale. 

N.M.R. AND THE ROUSE M O D E L  

The Rouse model is well known16; it will be considered in 
either of the two following ways. On the one hand, it will 
be assumed to describe slow chain diffusion processes 
although it is now known that some viscoelastic proper- 
ties are analysed in a better manner by the reptation 
model. However, all time-dependent or time-independent 
probability distribution functions associated with the 
Rouse model are Gaussian functions which are easily 
handled. Accordingly, correlation functions involved in 
n.m.r, can be calculated exactly. Therefore, the Rouse 
model is appropriate to the illustration of n.m.r, proper- 
ties induced by chain motions, albeit a qualitative 
illustration. 

On the other hand, the Rouse model will be assumed to 
describe the equilibration process of conformational 
fluctuations within a tube la. Any chain in a tube can 
laterally explore the available space but sustained lateral 
motions are forbidden because of uncrossable spatial 
constraints. 

According to current descriptions, the equilibration 
time for conformational fluctuations within a tube, To, is 
assumed to be expressed as: 

The spin-system response calculated in this section will 
be expressed within a second-order approximation for 
easy comparison with the reptation model developed in 
the foregoing section. However, it is worth emphasizing 
that exact calculations can be done by using a Rouse 
model 2, even though some of them necessitate a numerical 
analysis. 

Fluctuations at equilibrium 
The probability distribution function describing time- 

dependent fluctuation properties of any submolecule of a 
Rouse chain has already been expressed in ref. 2. For  one 
of the three Cartesian components of the end-to-end 
vector r~ of the nth submolecule: 

k(x"~, t; x~', t') = [2rca2(1 - E2(t, t')/3] - ,/2 

× exp{ - 3[x~"' - E(t, t')x~]2/2a~[1 - E2(t, t')]} 

with 

and 

(41) 

E(t, t') = N~-' ~, exp( - It - t'l/xp) (42) 
P 

z ;  ' = a ;  ' sin2[nff(2Ns + 1)]/16 (43) 

The correlation function in which we are interested has 
already been calculated 2' 22: 

To = N 2 W o  1 (37) with 

where W o is an elementary jump frequency. According to 
the model proposed by de Gennes, the curvilinear dif- 
fusion coefficient Dcv is defined as 17,29. 

Dcv = Do/Ns (38) 

D O = 2"d2 Wo (39) 
with 

D o may be considered as a diffusion coefficient per 
submolecule; 2* is a number smaller than one; d and N~ 
were already defined in an earlier section. During the time 
interval To, the net displacement of a chain as a whole 
along its own contour is: 

(As2)l/2=(DcvTd)l/2=(2*Nsd2)l/2 (40) 

It is a small function of the root-mean-square end-to- 
end distance of the whole chain; it is also the space size 
which is laterally explored. The reptation motion is 
supposed to occur in a time scale much longer than To 
from elementary steps about equal to (As 2) 1/2. 

The main difference between the Rouse model and the 
reptation model considered in the foregoing section may 
be analysed in the following way. Accordint to the Rouse 
model space memory of the chain is lost at any point of 
this chain; whereas according to the reptation model an 
initial step of the so-called primitive path may survive for 
a while, preserving its part of the initial conformation and 
imparting its orientation on whatever portion of the chain 
that is currently occupying it. Such a constraint must of 
course have an effect on the magnetic relaxation function 
which mainly reflects angular averages of tensorial spin 
interactions. 

~,(t) = 362 ~ Ns  2 e x p ( -  t/zp,~) (44) 
P , q  

Tp,q - -  Tp 

Formula (41) above clearly shows how chain diffusion 
properties of a whole chain may be perceived from n.m.r. 
on a semi-local space scale determined from a sub- 
molecule size. 

Correspondingly, the correlation function of end-to- 
end vectors of submolecules n and m is: 

(rn(t)rn + m(0))  2 ---- (~T¢2/Ns)E 
p 

x e x p ( -  t/zp) cos(2npm/N~) (45) 

while the relaxation function of the end-to-end vector of 
the whole chain is: 

ok(t) = (a2/N~) ~ exp( - t/zp) sin2(rcp/2)/sinE(rtp/Ns) (46) 
P 

o r  

dp(t)~-N~a 2 ~,, (1/~2p2)exp(-t /%) (47) 
p, odd 

~b(t) has the mathematical structure of the end-to-end 
vector correlation function calculated from the reptation 
model 21'25. Also, from the Rouse model, the relaxation 
modulus is known to be written as: 

GR(t) = (pRT/M)  ~ exp(-  t/~p) (48) 
p = l  

with M the chain molecular weight and p the polymer 
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density. Finally, the magnetic relaxation function gover- 
ned by ¢g,(t) is expressed as: 

MR(t)=exp(-  362 N~ Z 2 Tjp, q 

\ P ,q  

[exp(-  r/z.,~) + t/zp,~ + 1]) (49) 

All chain relaxation modes have an equal weight factor 
N~ 5. A residual energy of spin interaction per relaxation 
mode is defined by 6R = 6M/Ns. Contrary to the reptation 
model the transition of n.m.r, properties from a pseudo- 
solid spin-system response to a liquid-like one is now 
described as a progressive motional averaging effect 
applied on each relaxation mode separately (Figure 5). 
Motional averaging conditions are given by: 

150 

IOO 

zp.~<(6~) -1 p,q=l,2 .... (50) 

instead of the single condition TR < ~  ~ obtained from the 
reptation model. 

When chain relaxation times of the terminal spectrum 
are very long, %,q>(fR) -1 for p=q=N~, the kinetics of 
disentanglement are too slow to be perceived from n.m.r. 
Then the magnetic relaxation function M~t has a solid-like 
behaviour easily controlled from a sample rotation effect: 

M~R(6ht) ~-- exp(-- 36~t2/2) (51) 

with 6~=V/36r~. The physical measuring of 6h was 
illustrated in Figure I. When chain relaxation times of the 
terminal spectrum are very short, zl, 1 < (6~t)- 1, entangle- 
ments dissociate quickly enough to give rise to a liquid- 
like spin-system response; the magnetic relaxation fun- 
ction is: 

Mh(6ht) "~ exp[ - (6~t)] (52) 

with 
Z (53) 
P,q 

The physical meaning of 8~ was also illustrated in Figure 
1. It is worth emphasizing that formula (49) describes a 
transition from the Gaussian function (51) to the exponen- 
tial time function (52). These correspond to resonance 
lines which are a Gaussian function and a Lorentzian 
curve, respectively. It is well known that resonance lines 
actually observed on polymer melts look more like super- 
Lorentzian curves than like Gaussian functions. The 
transition of the spin-system response from a super- 
Lorentzian curve to a Lorentzian one has been given an 
exact treatment from a proton pair model in ref. 2. 
However, it is not easily handled to describe stress- 
relaxation effects on n.m.r., for example. 

The relaxation times, zt, x and TR, determined from 
n.m.r., clearly appear as the time intervals required to 
perceive any chain rotational diffusion process as an 
isotropic motion. At intermediate conditions: 

and 
zp,~ >(6R) -1 for p,q=l,2 ..... Po 

Zp,~ < (6~) -1 for P,q>Po, 

formula (49) may be considered as picturing an averaging 

<3 

5 0 -  

All  

© I I 
IO 5 t© 6 

M 

Figure 5 Transit ion curve of  n.m.r, propert ies described 
according to a Rouse model f rom formula (49);  wi th  6~ = 150 
rad s -1 and ~1.1 = 0.5 s for  M = 4.1 x 10 s. The chain molecular  
we igh t  dependence is: curve A, ~1,1 ocM3; curve B, ~1,1 ocM2. 
The broken l ine is a typical exper imental  t ransi t ion curve 

mechanism induced by a partial rotational diffusion of the 
chain. Therefore, it is perceived as a non-isotropic process 
from n.m.r. This is analogous with the semi-local trans- 
lational diffusion coefficient defined in ref. 19 to describe 
chain diffusion processes on a space scale smaller than the 
coil size. 

Slow stress relaxation 
Assuming now that the condition zp,~> >(6h) -1 is 

fulfilled for all p, q values, the spin-system response has a 
pure solid-like behaviour. A slow stress-relaxation n.m.r. 
study may be analysed in the way already described in the 
last section. However, more details will now be given 
using a Rouse model. Considering a sample stretched in 
the steady magnetic field direction, the residual energy of 
spin coupling resulting from the sudden sample defor- 
mation is expressed at any time t as: 

e.(2, t) = (36~/2a~)[2z.Z(2, t) - x.2(2, t ) -  y.2 (2, t)] (54) 

with x,, y, and z, the three Cartesian components of a 
given end-to-end vector G(2, t) at time t. The average over 
all submolecules having the same initial orientation 
r°(2, O) gives: 

~R(~, t )=  33M/2a~E2(t) 

x {22Z(z°) 2 - (1/2)[(x°) 2 + (yO)2]} (55) 

with 2 the initial stretching ratio and with 

E(t) = N s  I E exp(-  t/zp) 
p 
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The above formula is derived from well known ma- 
thematical properties of the Rouse model; for example: 

x2(t)  = (x°)2E 2 + tr2(1 - E 2 ) / 3  (56) 

and 
x2(2, t )=  (x°)2E2/2 + (r2(1 - E2)/3 (57) 

making the assumption of a finite deformation. 
The average over initial orientations of all submo- 

lecules leads to: 

[/3R(2,/;)]orient. = 6MEE(t)( 22 -- 1/2) (58) 

It is equal to zero in the absence of any stretching (2 = 1) as 
is expected. Also, it goes to zero when the stress-relaxation 
process of the sample is achieved; the sample is then 
isotropic. On the other hand, the mean square average: 
[gR2(2, t)]orient" = (62/4){ 12(1 - E z) + 8E2(1 - E 2) 

x (2- 1 + 222) + 2E4(2- 2 + 6 2 4 _ 4 2  + 32- ~)} (59) 

is never equal to zero; it goes to 36 2 at infinite time values 
or when 2 = 1 (isotropic sample). We now consider that 
the time interval zL 1 is divided into equal small time 
intervals At~ such that: 

(6~)- 1 < At i < < "fl. 1 (60) 

Then, for any submolecules n at any time t > tj =jAt i, the 
magnetic relaxation function reads: 

mR(n, t j; t -- ti) = COS{eR(2, t ) l t-  tfl} (61) 

and for all submolecules: 

MR(t j; t -- t~) = [COS{eR(2, tj)lt - tfl }']o~ient. (62) 

or 

MR(tg; t -- tg) = dp(t-- t j) 
× exp{i[eR(2, tj)]one,t.lt -- tfl} (63) 

with 
~b(t - tfl = exp[ - Z2(2, t~)lt - ti[ 2/2] (64) 

A second-order cumulant expansion was used to derive 
MR(t j ; t - -  t j): 

Z2(2, t~) = [(Ca(2, tj) -- 2 2 [eR(2, tj)]orient.) ]orient. 

= (6ME4/2)[224 + 822 + 42-72-  ~ + 32- 2 

+ 4E2(222 + 2-1) + 6(1 - Ez)2] (65) 

zz(2, t:.) goes to 362 at infinite time values (E---~0) or when 2 
= 1 (isotropic sample) while [eR(2, tj)Jorient, g o e s  to zero, as 
expected. Formulae (63), (64) and (65) clearly show that 
the initial stretching of any sample may induce both a 
high-frequency modulation and a high relaxation rate of 
the transverse nuclear magnetization. They are both 
proportional to 22E2(tj)6M, when 2 is large enough. An 
approach to the characterization of the terminal chain 
relaxation spectrum E(t)  may be obtained from n.m.r, by 
varying the initial stretching ratio 2 and by monitoring the 
magnetic relaxation process as a whole from a Carr -  
Purcell spin-echo procedure performed at equal time 
intervals. Such a chain relaxation spectrum characterized 
from n.m.r., i.e. from a semi-local observation, may then 

be compared with the relaxation spectrum obtained from 
viscoelastic properties. 

To conclude this section, it may therefore be noticed 
that n.m.r, may be used in either of the following two 
ways: 

(i) to observe chain fluctuations at equilibrium, on a 
semi-local space scale when entanglements dissociate 
quickly enough; or 

(ii) to monitor the slow stress-relaxation process of a 
sample induced on a macroscopic scale while it is 
observed on a semi-local space scale; such an experimen- 
tal procedure can be used when entanglements dissociate 
very slowly. 

DISCUSSION: A NON-ISOTROPIC 
ROUSE MO D EL?  

The n.m.r, approach to the characterization of polymer 
chain diffusion processes in melts or in concentrated 
solutions attempts to determine: 

(i) the exact nature of the chain relaxation spectrum 
associated with properties observed on a semi-local space 
scale because these reflect collective motions of sub- 
molecules within a whole chain; 

(ii) relationships between the spectrum observed from 
n.m.r, and that characterized from viscoelastic measure- 
ments; the structure of the observed spectrum (number of 
relaxation modes, weight factors) and its chain molecular 
weight dependence should help to identify it as a possible 
Rouse spectrum or a reptation one. 

The reptation model considered showed that a single 
chain relaxation-mode process is expected to govern the 
magnetic relaxation mechanism. The transition of n.m.r. 
properties from a pseudo-solid response of the spin 
system to a liquid one induced by shortening polymer 
chains or by diluting them should be sharp. At the middle 
point of the transition, the chain relaxation time TR should 
be roughly equal to 6~ 1 ~ 2 x 10- 3 s. 

On the other hand, the transition of n.m.r, properties 
described from a Rouse model results from a multiple- 
mode motional averaging process. It should be smooth. 
At the middle point of the transition, the terminal 
relaxation time zl, 1 should be roughly equal to (6M/Ns)- 1 

----- 2 × 10- ~ s (Ns is the number of chain relaxation modes). 
Recent experimental n.m.r, studies of polyisobutylene- 

carbon disulphide 3 or pure molten poly(dimethyl 
siloxane) systems 1 have been analysed by using either a 
multiple relaxation-mode spectrum or a single relaxation- 
mode and a molecular weight dependence of zl, 1 o r  T R 
proportional to M 2 or M 3 (M is the chain molecular 
weight). Surprisingly enough, the multiple relaxation- 
mode spectrum, associated with an M 3 dependence of 
T1,1, was found to fit the experimental results better than 
the single relaxation-mode spectrum. More precisely, 
considering a reptation model TR was found to be about 
100 times shorter than the fundamental time scale of 
viscoelastic properties ~lo/G ° (G ° is the shear modulus in 
the viscoelastic plateau region) 2° and its molecular weight 
dependence would have been proportional to M 2 instead 
of M 3. While using a Rouse model, zl, ~ was found to be 
about 10 times longer than ~o/G ° and its molecular weight 
dependence was proportional to M 3 (instead of M2). 

Considering experimental n.m.r, results obtained from 
a few polymer systems so far in this chain motion 
frequency range it is suggested that one assumes that the 
Rouse model is a heuristic description because it takes 
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into consideration both a diffusional process of the chain 
mainly characterized by a Zx, 1, zx,2, ~2,1 and an M a 
molecular weight dependence, and additional nuclear 
relaxation mechanisms roughly characterized by other 
relaxation times and probably corresponding to internal 
motions of chain segments in submolecules. 

The result zl, 1 ~ 10qo/G° may be understood by con- 
sidering that n.m.r, measurements are based on a criterion 
of chain motion isotropy; z a, 1 is the time interval required 
to perceive the chain diffusion as an isotropic motion. The 
reference parameter  of isotropy is 6M/Ns. This criterion 
may attenuate the reptation picture. We could equally 
well consider that the chain motion perceived as a whole 
from n.m.r, is a transient non-isotropic Rouse process 
characterized by two terminal relaxation spectra: one of 
them, f~2, describes a longitudinal chain diffusion along a 
given axis, say a Z-axis for example; while the other one, 
f~ ,  describes the transverse diffusion of the given chain. 
f ~  is assumed to consist of relaxation times much longer 
than those defined from the ~ spectrum. Any chain may  
therefore be pictured as losing its space memory  more 
rapidly in one direction than in the transverse one. Such a 
model leads of course to an isotropic space distribution of 
the chain at infinite times, at equilibrium. The correspond- 
ing magnetic relaxation function reads: 

M~(t  ) = M~,z(  t )M~,T(t ) (66) 

M~. z = exp ( - 2 6 ~ N ~  Z (~,~)2 
P , q  

and 

x [ e x p ( -  t / ~ , q ) +  t/zz,~ - 1])  

M~.T = exp ( -- 62M/Ns Z (Xp,,~)T ':' 
P , q  

(67) 

\ 
x [exp( - t / z  T, ~) + t/z~,q - 1])  (68) 

M]( t )  also describes the transition of the spin-system 
response from a pseudo-solid response to a liquid-like 
one. The longest relaxation times measured from n.m.r. 
should correspond to about  10r/0/G °. Experimental n.m.r. 
results obtained until now are closer to a non-isotropic 
Rouse model than to a reptation one. 

To conclude this paper  it is worth emphasizing that 
n.m.r, is a powerful technique of chain fluctuation in- 
vestigations because both the transition spectrum and the 
terminal relaxation spectrum may be explored using 
different specific pulse sequences to obtain spin-system 

responses which characterize either high-frequency .local 
motions ( ~  109 Hz, longitudinal magnetic relaxation) or 
low-frequency chain motions like disentanglement me- 
chanisms ("~10Hz, transverse magnetic relaxation). 
N.m.r. should also be used to investigate cross-relaxation 
properties to monitor  relaxations of sudden sample 
deformations induced at a macroscopic scale, while 
observations are made in a semi-local space scale. Further 
experimental n.m.r, investigations of polymer properties 
observed on partly labelled monomeric units are nec- 
essary to identify clearly the relaxation spectrum observed 
on a semi-local space scale. 
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